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Deep Learning



Why going deep?

Data are often high-dimensional. 

There is a huge amount of structure in the data, but the 
structure is too complicated to be represented by a simple 
model. 

Insufficient depth can require more computational elements
than architectures whose depth matches the task. 

Deep nets provide simpler but more descriptive models of 
many problems. 



Microsoft’s speech recognition system 

http://v.youku.com/v_show/id_XNDc0MDY4ODI0.html 



Human-Level Control via Deep RL

Deep Q-network with human-level performance on A

Minjie will talk more in next lecture

[Mnih et al., Nature 518, 529–533, 2015]



MIT 10 Breakthrough Tech 2013

http://www.technologyreview.com/featuredstory/513696/deep-learning/

http://www.technologyreview.com/featuredstory/513696/deep-learning/


Deep Learning in industry

Driverless car Face identification Speech recognition Web search

…

…

http://en.wikipedia.org/wiki/File:Jurvetson_Google_driverless_car_trimmed.jpg
http://en.wikipedia.org/wiki/File:Jurvetson_Google_driverless_car_trimmed.jpg


Deep Learning Models



How brains seem to do computing?

The business end of this is made of lots of these joined in networks like this

Much of our own “computations” are performed in/by this network

Learning occurs by changing the effectiveness of the synapses so that the 

influence of one neuron on another changes



History of neural networks



History of neural networks



Model of a neuron



Activation function

Threshold function & piecewise linear function:

Sigmoid function

Ã®(v) =
1

1 + exp(¡®v)

: step function



Activation function with negative values

Threshold function & piecewise linear function:

Hyperbolic tangent function

sgn(x) =

½
1 if x ¸ 0

¡1 if x < 0



McCulloch & Pitts’s Artificial Neuron

The first model of artificial neurons in 1943

 Activation function: a threshold function



Network Architecture

Feedforward networks

Recurrent networks
Input layer

Hidden layer

Output layer

Output

Input



Learning Paradigms

Unsupervised learning (learning without a teacher)

 Example: clustering



Learning Paradigms

Supervised Learning (learning with a teacher)

 For example, classification: learns a separation plane



Learning Rules

Error-correction learning

Competitive learning

Hebbian learning

Boltzmann learning

Memory-base learning

 Nearest neighbor, radial-basis function network



Error-correction learning

The generic paradigm:

 Error signal:

 Learning objective:

One or more 

layers of 

hidden 

neurons

Input vector

+¡
yjx

dj

ej = yj ¡dj

Output 

neuron j

ej

min
w

R(w;x) :=
1

2

X

j

e2
j



Example: Perceptron

One-layer feedforward network based on error-correction 
learning (no hidden layer):

 Current output (at iteration t):

 Update rule (exercise?):

w
j
t+1 = w

j
t +´(yj ¡dj)x

dj = (w
j
t)
>
x



Perceptron for classification

Consider a single output neuron

Binary labels:

Output function:

Apply the error-correction learning rule, we get … (next 

slide)

y 2 f+1;¡1g

d = sgn w
>
t x



Perceptron for Classification

Set               and t=1; scale all examples to have length 1 

(doesn’t affect which side of the plane they are on)

Given example x, predict positive iff

If a mistake, update as follows

 Mistake on positive:

 Mistake on negative:

w1 = 0

w>
t x > 0

wt+1 Ã wt + ´tx

wt+1 Ãwt ¡ t́x

t Ã t + 1

wt
wt wt+1



Convergence Theorem

For linearly separable case, the perceptron algorithm will 

converge in a finite number of steps



Mistake Bound

Theorem:

 Let     be a sequence of labeled examples consistent with a linear 

threshold function                   , where       is a unit-length vector.  

 The number of mistakes made by the online Perceptron algorithm is at 

most             , where

 i.e.: if we scale examples to have length 1, then     is the minimum 

distance of any example to the plane 

 is often called the “margin” of        ; the quantity             is the cosine 

of the angle between     and     

w>
¤ x > 0

S
w¤

(1=°)2

° = min
x2S

jw>
¤ xj

kxk

°

w>
¤ x = 0

° w¤
w>
¤ x

kxkw¤x



Deep Nets

Multi-layer Perceptron

CNN

Auto-encoder

RBM

Deep belief nets

Deep recurrent nets



XOR Problem

Single-layer perceptron can’t solve the problem



XOR Problem

A network with 1-layer of 2 neurons works for XOR:

 threshold activation function

 Many alternative networks exist (not layered)



Multilayer Perceptrons

Computatonal limitations of single-layer Perceptron by 

Minsky & Papert (1969)

Multilayer Perceptrons:

 Multilayer feedforward networks with an error-correction 

learning algorithm, known as error back-propagation

 A generalization of single-layer percetron to allow nonlinearity



Backpropagation

Learning as loss minimization

Learning with gradient descent

Input layer

Hidden layer

Output layer

y1 yK

w1

w2

wL

ej = yj ¡dj



Backpropagation

Step function in perceptrons is non-differentiable

Differentiable activation functions are needed to calculate 

gradients, e.g., sigmoid:

Ã®(v) =
1

1 + exp(¡®v)



Backpropagation

Derivative of a sigmoid function (           )

 Notice about the small scale of the gradient

 Gradient vanishing issue

Many other activation functions examined 

rvÃ(v) =
e¡v

(1 + e¡v)2
= Ã(v)(1¡ Ã(v))

® = 1



Gradient computation at output layer

Output neurons are separate: 

Input layer

Hidden layer

Output layer

y1 yK

w1

w2

wL

Assume this part is fixed

f1(x) fM (x)f2(x)



Gradient computation at output layer

Signal flow:

ej

yj

dj
X

vj
Ã(¢) ¡

+

wj1

wj2

wjM

...

f1(x)

fM (x)

...

f2(x)

vj = w>
j f(x) dj = Ã(vj) ej = yj ¡dj

Rj =
1

2
e2
j

rwji
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@ej

@dj

@dj

@vj

@vj

@wji

= ej ¢ (¡1) ¢ Ã0(vj) ¢ fi(x)

= ¡ejÃ
0(vj)fi(x)R =

1

2

X

j

e2
j

±j = ¡
@R

@vj
Local gradient:



Gradient computation at hidden layer

Output neurons are NOT separate: 

Input layer

Hidden layer

Output layer

y1 yK

w1

w2

wL Assume this part is fixed
g1(x) gK (x)g2(x)



Gradient computation at hidden layer
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Back-propagation formula

The update rule of local gradients:

 for hidden neuron i:

Flow of error signal:

±i = Ã0(vi)
X

j

±jwji

Only depends on the activation function at hidden neuron i

e1

ej

eJ

...

...

±1

±j

±J

...

...

±i

Ã0(v1)

Ã0(v2)

Ã0(vJ)

w1i

wji

wJi
Hidden

layer

Output layer



Back-propagation formula

The update rule of weights:

 Output neuron:

 Hidden neuron:

¢wji = ¸ ¢ ±j ¢ fi(x)

¢w0
ik = ¸ ¢ ±i ¢ gk(x)

0

@
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Two Passes of Computation

Forward pass

 Weights fixed

 Start at the first hidden layer

 Compute the output of each neuron

 End at output layer

Backward pass

 Start at the output layer

 Pass error signal backward through the network

 Compute local gradients



Stopping Criterion

No general rules

Some reasonable heuristics:

 The norm of gradient is small enough

 The number of iterations is larger than a threshold

 The training error is stable

 …



Improve Backpropagation

Many methods exist to improve backpropagation

E.g., backpropagation with momentum

¢wt
ij = ¡¸

@R

@wij

+ ®¢wt¡1
ij



Neurons as Feature Extractor

Compute the similarity of a pattern to the ideal pattern of a 
neuron

Threshold is the minimal similarity required for a pattern

Reversely, it visualizes the connections of a neuron



Vanishing gradient problem

The gradient can decrease exponentially during back-prop

Solutions:

 Pre-training + fine tuning

 Rectifier neurons (sparse gradients)

Ref:

 Gradient flow in recurrent nets: the difficulty of learning long-
term dependencies. Hochreiter, Bengio, & Frasconi, 2001



Deep Rectifier Nets
Sparse representations without gradient vanishing

 Non-linearity comes from the path selection
 Only a subset of neurons are active for a given input

 Can been seen as a model with an exponential number of linear models that 
share weights

[Deep sparse rectifier neural networks. Glorot, Bordes, & Bengio, 2011]



CNN

Hubel and Wiesel’s study on annimal’s visual cortex:

 Cells that are sensitive to small sub-regions of the visual field, 

called a receptive field

 Simple cells respond maximally to specific edge-like patterns 

within their receptive field. Complex cells have larger receptive 

fields and are locally invariant to the exact position of the 

pattern.



Convolutional Neural Networks

Sparse local connections (spatially contiguous receptive 

fields)

Shared weights: each filter is replicated across the entire 

visual field, forming a feature map



CNN

Each layer has multiple feature maps



CNN

The full model

Max-pooling, a form of non-linear down-sampling. 

 Max-pooling partitions the input image into a set of non-overlapping 
rectangles and, for each such sub-region, outputs the maximum 
value.



Example: CNN for image classification

Network dimension: 150,528(input)-253,440–186,624–64,896–
64,896–43,264–4096–4096–1000(output)
 In total: 60 million parameters 

 Task: classify 1.2 million high-resolution images in the ImageNet
LSVRC-2010 contest into the 1000 different classes

 Results: state-of-the-art accuracy on ImageNet

Krizhevsky, Sutskever and Hinton, NIPS, 2012 



Issues with CNN

Computing the activations of a single convolutional filter is 

much more expensive than with traditional MLPs

Many tuning parameters

 # of filters:

 Model complexity issue (overfitting vs underfitting)

 Filter shape: 

 the right level of “granularity” in order to create abstractions at the proper 

scale, given a particular dataset

 Usually 5x5 for MNIST at 1st layer

 Max-pooling shape: 

 typical: 2x2; maybe 4x4 for large images



Auto-Encoder

Encoder: (a distributed code)

Decoder:

Minimize reconstruction error

Connection to PCA

 PCA is linear projection, which Auto-Encoder is nonlinear

 Stacking PCA with nonlinear processing may perform as well (Ma Yi’s work)

Denoising Auto-Encoder

 A stochastic version with corrupted noise to discover more robust features

 E.g., randomly set some inputs to zero



Left: no noise;      right: 30 percent noise



Deep Generative Models



Stochastic Binary Units

Each unit has a state of 0 or 1 

The probability of turning on is determined by 



Generative Models

Directed acyclic graph with 

stochastic binary units is termed 

Sigmoid Belief Net (Radford 

Neal, 1992)

Undirected graph with stochastic 

binary units is termed Boltzmann 

Machine (Hinton & Sejnowski, 

1983)



Learning Deep Belief Nets

Easy to generate an unbiased 

example at the leaf nodes 

Hard to infer the posterior 

distribution over all possible 

configurations of hidden 

causes – explain away effect!

 Hard to even get a sample 

from the posterior 



Learning Boltzmann Machine

Hard to generate an unbiased 

example for the visible units 

Hard to infer the posterior 

distribution over all possible 

configurations of hidden causes 

Hard to even get a sample from the 

posterior 



Restricted Boltzmann Machines

An energy-based model with hidden units

Graphical structure:

Restrict the connectivity to make learning easier. 



Restricted Boltzmann Machines

Factorized conditional distribution over hidden units



Restricted Boltzmann Machines

For Gibbs sampling

 Hidden units:

 Observed units:



MLE

Log-likelihood

Gradient



Contrastive Divergence (CD)

Gibbs sampling for negative phase

 Random initialization: v’->h’-

> … -> v -> h

 Slow because of long burn-in 

period

Intuition of CD

 Start from a data closed to the 

model samples

CD-k for negative phase

 Start from empirical data and  ran 

k-steps

 Typically, k=1: v1->h1->v2->h2



RBM

Filters

Samples (RBM is a generative model) 



Issues with RBM

Log-partition function is intractable

No direct metric for choosing hyper-parameters

(one hidden layer) Much too simple for modeling high-

dimensional and richly structured sensory data



Deep Belief Nets – deep generative model

[Hinton et al., 2006]

Stacking RBM

Greedy layerwise training

Unsupervised learning

 No labels

 MLE

generation
recognition



Neural Evidence?

Our visual systems contain multilayer generative models

Top-down connections:

 Generate low-level features of images from high-level 

representations

 Visual imagery, dreaming?

Bottom-up connections:

 Infer the high-level representations that would have generated 

an observed set of low-level features

[Hinton, Trends in Cognitive Science, 11(10), 2007]



Recent Advances on DGMs
Models:
 Deep belief networks (Salakhutdinov & Hinton, 2009)
 Autoregressive models (Larochelle & Murray, 2011; Gregor et al., 2014)
 Stochastic variations of neural networks (Bengio et al., 2014)
 …

Applications:
 Image recognition (Ranzato et al., 2011)
 Inference of hidden object parts (Lee et al., 2009)
 Semi-supervised learning (Kingma et al., 2014)
 Multimodal learning (Srivastava & Salakhutdinov, 2014; Karpathy et al., 

2014)
 …

Learning algorithms
 Stochastic variational inference (Kingma & Welling, 2014; Rezende et al., 

2014)
 …



Learning with a Recognition Model

Characterize the variational distribution with a recognition 
model

For example:

 where both mean and variance are nonlinear function of data by 
a DNN

x n

z n

N

y n

q Á ( z n )



Long Short-Term Memory

A RNN architecture without gradient vanishing issue

A RNN with LSTM blocks

 Each block is a “smart” network, determing when to remember, 

when to continue to remember or forget, and when to output

[Graves et al., 2009. A Novel Connectionist System for Improved Unconstrained Handwriting Recognition]



Issues

The sharpness of Gates’ activation functions maters!

[Lv & Zhu, 2014. Revisit Long Short-Term Memory: an Optimization Perspective]



Discussions



Challenges of DL

Learning

 Backpropagation is slow and prone to gradient vanishing

 Issues with non-convex optimization in high-dimensions

Overfitting

 Big models are lacking of statistical information to fit

Interpretation

 Deep nets are often used as black-box tools for learning and 

inference



Expensive to train

9 layers sparse autoencoder with:

-local receptive fields to scale up; 

- local L2 pooling and local contrast normalization for 

invariant features

- 1B parameters (connections)

- 10M 200x200 images

- train with 1K machines (16K cores) for 3 days

-able to build high-level concepts, e.g., cat faces and 

human bodies

-15.8% accuracy in recognizing 22K objects (70% 

relative improvements)

“Big Model + Big Data + Big/Super Cluster”



Local Optima vs Saddle Points

Statistic Physics provide analytical tools

High-dimensional optimization problem

 Most critical points are saddle points

 The likelihood grows exponentially!



Dynamics of Various Opt. Techniques
SGD:
 Gradient is accurate, but may suffer from slow steps

Newton method:
 Wrong directions when negative curvatures present
 Saddle points become attractors! (can’t escape)

Saddle-free method:
 A generalization of Newton’s method to escape saddle points (more rapidly 

than SGD)



Some Empirical Results



Overfitting in Big Data

Predictive information grows slower than the amount of 

Shannon entropy (Bialek et al., 2001)



Overfitting in Big Data

Predictive information grows slower than the amount of 

Shannon entropy (Bialek et al., 2001)

Model capacity grows faster than the amount of 

predictive information!



Overfitting in DL

Increasing research attention, e.g., dropout training (Hinton, 

2012)

More theoretical understanding and extensions

 MCF (van der Maaten et al., 2013); Logistic-loss (Wager et al., 

2013); Dropout SVM (Chen, Zhu et al., 2014)



Model Complexity

What do we mean by structure 
learning in deep GMs?
 # of layers
 # of hidden units at each layer
 The type of each hidden unit (discrete 

or continuous?)
 The connection structures (i.e., edges) 

between hidden units

Adams et al. presented a structure 
learning method using 
nonparametric Bayesian techniques –
a cascading IBP (CIBP) process 
[Admas, Wallach & Ghahramani, 
2010]



Structure of Deep Belief Networks

What do we mean by structure 

learning in deep GMs?

 # of layers

 # of hidden units at each layer

 The type of each hidden unit (discrete 

or continuous?)

 The connection structures (i.e., edges) 

between hidden units

[Animation by Wallach]
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Structure of Deep Belief Networks

What do we mean by structure 

learning in deep GMs?

 # of layers

 # of hidden units at each layer

 The connection structures (i.e., edges) 

between hidden units

 The type of each hidden unit (discrete 

or continuous?)

[Animation by Wallach]



Multi-Layer Belief Networks

A sequence of binary matrices => deep BNs

m=0

m=1

m=2

m=3

m=4

m=5

m=6

Z(1)

Z(2)

Z(3)



The Cascading IBP (CIBP)

A stochastic process which results in an infinite sequence of 

infinite binary matrices

 Each matrix is exchangeable in both rows and columns

How do we know the CIBP converges?

 The number of dishes in one layer depends only on the number 

of customers in the previous layer

 Can prove that this Markov chain reaches an absorbing state in 

finite time with probability one



Samples from CIBP Prior

* only connected units are shown



Some counter-intuitive properties

Stability w.r.t small perturbations to inputs

 Imperceptible non-random perturbation can arbitrarily change 

the prediction (adversarial examples exist!)

[Szegedy et al., Intriguing properties of neural nets, 2013]

10x of 

differences



Criticisms of DL

Just a buzzword, or largely a rebranding of neural networks

Lack of theory

 gradient descent has been understood for a while

 DL is often used as black-box

DL is only part of the larger challenge of building intelligent 
machines, still lacking of:

 causal relationships

 logic inferences

 integrating abstract knowledge



How can neural science help?

The current DL models:

 loosely inspired by the densely interconnected neurons of the brain

 mimic human learning by changing weights based on experience

How to improve?

 Transparent architecture?
 Attention mechanism?

 Cheap learning?
 (partially) replace back-propagation?

 Others?



Will DL make other ML methods obsolete?

Yes (2 post, 113 upvotes)

• best predictive power when data sufficient

• DL is far from saturated

• Google et al invests on DL, it is the 

“richest” AI topic

No (10 posts, 284 upvotes)

• simpler algorithms are just fine in many cases

• methods with domain knowledge works better

• DL is feature learning, needs other methods to work

• DL is not that well developed, a lot of work to be 

done using more traditional methods

• No free lunch

• a lot like how ANN was viewed in the late 80s

2014/12/23



What are people saying?

Yann LeCun: 
 “AI has gone from failure to failure, with bits of progress. This could 

be another leapfrog”

Jitendra Malik: 
 in the long term, deep learning may not win the day; … “Over time 

people will decide what works best in different domains.”
 “Neural nets were always a delicate art to manage. There is some 

black magic involved”

Andrew Ng:
 “Deep learning happens to have the property that if you feed it more 

data it gets better and better,”
 “Deep-learning algorithms aren't the only ones like that, but they're 

arguably the best — certainly the easiest. That's why it has huge 
promise for the future.”

[Nature 505, 146–148 (09 January 2014) ]



What are people saying?

Oren Etzioni: 

 “It‘s like when we invented flight” (not using the brain for 

inspiration)

Alternatives:

 Logic, knowledge base, grammars?

 Quantum AI/ML?

[Nature 505, 146–148 (09 January 2014) ]



Thank  You!


